Literatur Empfehlungen

1. Biant, L. C., Bentley, G., Vijayan, S., Skinner, J. A. & Carrington, R. W. J. Long-term Results of Autologous Chondrocyte Implantation in the Knee for Chronic Chondral and Osteochondral Defects. Am. J. Sports Med. 42, 2178–83 (2014).

2. Knutsen, G. et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 86-A, 455–64 (2004).

3. Jäger, M., Feser, T., Denck, H. & Krauspe, R. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Ann. Biomed. Eng. 33, 1319–32 (2005).

4. Gooding, C. R. et al. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 13, 203–10 (2006).

5. Chen, J. M., Willers, C., Xu, J., Wang, A. & Zheng, M.-H. Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng. 13, 1479–91 (2007).

6. Jäger, M. et al. Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation. J. Bone Miner. Res. 22, 1224–33 (2007).

7. Iwasa, J., Engebretsen, L., Shima, Y. & Ochi, M. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg. Sports Traumatol. Arthrosc. 17, 561–77 (2008).

8. Gomoll, A. H., Probst, C., Farr, J., Cole, B. J. & Minas, T. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am. J. Sports Med. 37 Suppl 1, 20S–23S (2009).

9. Brittberg, M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte

implantation procedure. Am. J. Sports Med. 38, 1259–71 (2010).

10. Harris, J. D. et al. Failures, re-operations, and complications after autologous chondrocyte implantation--a systematic review. Osteoarthritis Cartilage 19, 779–91 (2011).

11. Saris, D. et al. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Two-Year Follow-up of a Prospective Randomized Trial. Am. J. Sports Med. 42, 1384–1394 (2014).

12. Brittberg, M., Price, A., Yu, Q., Kili, S. & Saris, D. Poster: SUMMIT Trial : Matrix-induced Autologous Chondrocyte Implant versus Microfracture at 3 Years. in Poster AAOS Annu. Meet. 2015, Las Vegas, Nevada (2015).

13. Dhollander, A. A. M. et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg. Sports Traumatol. Arthrosc. 19, 536–42 (2010).

14. Gille, J. et al. Cell-Laden and Cell-Free Matrix-Induced Chondrogenesis versus Microfracture for the Treatment of Articular Cartilage Defects: A Histological and Biomechanical Study in Sheep. Cartilage 1, 29–42 (2010).

15. Gille, J. et al. Mid-term results of Autologous Matrix-Induced Chondrogenesis for treatment of focal cartilage defects in the knee.

Knee Surg. Sports Traumatol. Arthrosc. 18, 1456–64 (2010).

16. Anders, S., Volz, M., Frick, H. & Gellissen, J. A Randomized, Controlled Trial Comparing Autologous Matrix-Induced Chondrogenesis (AMIC®) to Microfracture: Analysis of 1- and 2-Year Follow-Up Data of 2 Centers. Open Orthop. J. 7, 133–43 (2013).

17. Gille, J. et al. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch.

Orthop. Trauma Surg. 133, 87–93 (2013).

18. Bark, S. et al. Enhanced microfracture techniques in cartilage knee surgery: Fact or fiction? World J. Orthop. 5, 444–9 (2014).

19. Lee, Y. H. D., Suzer, F. & Thermann, H. Autologous Matrix-InducedChondrogenesis in the Knee: A Review. Cartilage 5, 145–153 (2014).

20. Benthien, J. P. & Behrens, P. Nanofractured autologous matrixinduced chondrogenesis (NAMIC©) — Further development of collagen

membrane aided chondrogenesis combined with subchondral needling. Knee (2015). doi:10.1016/j.knee.2015.06.010 21. Benthien, J. P. & Behrens, P. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note. Int. Orthop. 37, 2139–45 (2013).

22. Behrens, P., Varoga, D., Niemeyer, P. & Salzmann, G. Intraoperative biologische Augmentation am Knorpel. Arthroskopie 26, 114–122


23. Min, B.-H. et al. Effect of different bone marrow stimulation techniques (BSTs) on MSCs mobilization. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 31, 1814–1819 (2013).

24. Eldracher, M., Orth, P., Cucchiarini, M., Pape, D. & Madry, H. Small Subchondral Drill Holes Improve Marrow Stimulation of Articular

Cartilage Defects. Am. J. Sports Med. 42, 2741–2750 (2014). 25. Benthien, J. P. & Behrens, P. The treatment of chondral and

osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg. Sports Traumatol. Arthrosc. 19, 1316–9 (2011).

26. Piontek, T., Ciemniewska-Gorzela, K., Szulc, A., Naczk, J. & Słomczykowski, M. All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg. Sports Traumatol. Arthrosc. 20, 922–5 (2012).

27. Hunziker, E. B. & Stähli, A. Surgical suturing of articular cartilage induces osteoarthritis-like changes. Osteoarthritis Cartilage 16, 1067– 73 (2008).